Depending on your favorite sci-fi yarns, teleportation is either a very, very bad idea (see: The Fly) or a very, very cool one (see: Star Trek). For scientists, it's just very, very complex, so much so that at this point, teleportation is not a matter of moving matter but one of transporting information. Already, physicists have been able to exchange information between light particles — or photons — or between atoms, so long as they were right next to each other. The current experiment marks the first in which information has traveled a significant distance — 1 m, or a little more than 3 ft. — between two isolated atoms. It's also the first time the powers of a photon, which is good at traveling over long distances, and an atom, which is prized for its ability to retain information, have been jointly exploited.
Using a pair of ions, or charged particles, group leader Christopher Monroe and his team place each in a vacuum and keep them in position with electric fields. An ultra-fast laser pulse triggers the atoms to emit photons simultaneously. If the photons interact in just the right way, their parent atoms enter a quantum state known as entanglement, in which atom B adopts the properties of atom A even though they're in separate chambers a meter apart. When A is measured, the information that had been previously encoded on it disappears in accordance with the quirky rules of the quantum world. But all is not lost: because B is entangled with A, B now contains the information that was once carried on A. That information, in a very real sense, has been teleported.
Monday, February 2, 2009
Teleportation a quantum leap closer.
I need to invent time travel just so I don't have to wait for teleportation to be perfected. I can't wait! From Time:
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment