The giant dragonflies of ancient Earth with wingspans of up to 70 centimeters (28 inches) are generally attributed to higher oxygen atmospheric levels in the atmosphere in the past. New experiments in raising modern insects in various oxygen-enriched atmospheres have confirmed that dragonflies grow bigger with more oxygen, or hyperoxia.
However, not all insects were larger when oxygen was higher in the past. For instance, the largest cockroaches ever are skittering around today. The question becomes how and why do different groups respond to changes in atmospheric oxygen.
The secrets to why these changes happened may be in the hollow tracheal tubes insects use to breathe. Getting a better handle on those changes in modern insects could make it possible to use fossilized insects as proxies for ancient oxygen levels.
“Our main interest is in how paleo-oxygen levels would have influenced the evolution of insects,” said John VandenBrooks of Arizona State University in Tempe. To do that they decided to look at the plasticity of modern insects raised in different oxygen concentrations. The team raised cockroaches, dragonflies, grasshoppers, meal worms, beetles and other insects in atmospheres containing different amounts of oxygen to see if there were any effects.
One result was that dragonflies grew faster into bigger adults in hyperoxia. However, cockroaches grew slower and did not become larger adults. In all, ten out of twelve kinds of insects studied decreased in size in lower oxygen atmospheres. But there were varied responses when they were placed into an enriched oxygen atmosphere. VandenBrooks will be presenting the results of the work on Monday, Nov. 1 at the annual meeting of the Geological Society of America in Denver.
Monday, November 1, 2010
Scientists creating giant cockroaches and dragonflies.
We are dooooooomed!! From the Geological Society of America:
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment